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ABSTRACT A
It is shown that a one-way 3D parallel/sequential acceptor

cannot accept the class of 3D binary arrays in which the set
of l's is connected, unlike the situation in the 2D case; but
it can do so if multiple passes are allowed.
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0. Introduction

In recent years, there have arisen many requirements for

three-dimensional (3D) data processing with advances in com-

* puter tomography (CT). Some topological properties of 3D

digital pictures have been discussed in a series of papers

by Rosenfeld and Morgenthaler [l]-[51, as well as others. A

3D picture can be represented by a 3D array of volume elements

(voxels for short). In a binary-valued 3D picture (each voxel

! .is 0 or 1), it is easy to define cainectedness, and objects and

cavities are then defined as the equivalence classes of the

connectedness relation. These correspond to two-dimensional

(2D) objects and holes, respectively. Moreover, in the 3D

case, there also exist 3D holes whose properties are quite dif-

ferent from those of 2D holes.

In this paper, we consider the problem of recognition of

the above-mentioned properties of 3D pictures. First, we pro-

pose algorithms which for every (binary) 3D digital picture

compute the numbers of objects, cavities and holes. These

algorithms are performed in one pass; they are 3D versions

of the algorithm for 2D digital pictures which was given

by Selkow [6]. Since we usually receive a series of 2D pic-

tures as the ou\tput of a CT scanner, it is of interest that

these algorithms scan such output plane by plane, from the top

to the bottom, and stop when all of them have been scanned.

However, the algorithms violate the condition of finiteness

of the symbols used. From the point of view of the theory of

languages and their acceptance, this condition of finiteness

E



is a fundamental one. In the second part of this paper, we

discuss this problem and show that any one-way 3D parallel/

sequential acceptor cannot accept the set of 3D pictures

such that the set of l's is connected. This is interesting

because it is known that a one-way 2D parallel/sequential

acceptor can do this acceptance for the 2D case (e.g., see

Theorem 7.4.6 in [7]). In the third part of this paper,

we extend the concept of a 3D parallel/sequential acceptor

to allow multiple passes. This concept of multi-pass is the

same as that introduced in [8]. Then, making use of a shrink-

ing technique used in [9] we show that a multi-pass one-way

3D parallel/sequential acceptor can accept 3D connectedness.

We assume that the readers are familiar with the basic

concepts of picture languages.
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1. Preliminaries

Let Z be a 3D array of lattice points, which we assume to be

x mxn, i.e., Z = {(i,j,k)I 1 j5m, lkSn}. A 3D digital

picture f is a mapping from Z to {O,1}, i.e., f:Z-{O,1}. Each

point (i,j,k) is called a voxel. Here, we assume that any 3D

digital picture is surrounded by the special symbol # (called the

blank symbol). That is, let B be the set {(i,j,k)I(i=O & Oj~m+l

& 0-k5n+l) v (i=?+l & O:jmm+l & OEkfn+l) v (0Oi5+l & j=O & 0-ksn+l)v

(0Oi:5+l & j=m+l & Ofk~n+l) v (0Oi<Z+l & 05j-m+l & k=O) v (Ofi:e+l &

0j-m+l & k=n+l)}. Then every latice point of B is occupied by

the symbol #. The set B is called the border of E. Usually,

the subset of l's of z, i.e., the set {(i,j,k)Jf(i,j,k)=l}, is

called S, and its complement is called S. For every pair of points

X=(xl,X 2,X3 ) and Y=(y1 ,y2 ,Y3 ), X and Y are 6-adjacent if Ixl-Yl1+

Ix 2-Y2+lx3-Y3l=l; Y and Y are 26-adjacent if max(!x l-yll,lx 2-Y21,

3 x3Y301. If points P and Q are 6-adjacent (26-adjacent), then

P is called a 6-neighbor (26-neighbor) of Q. To avoid ambiguous

situations we assume that opposite types of adjacency are used

for S and S. A 6-path (26-path) v is a sequence of points, r=

4 P'P'p''Pl..m' where, for all i such that li-m, pi is a 6-neighbor

(26-neighbor) of pil" Any two points P,Q of S are called

connected in S if there exists a path P=po...,pm=Q from P to Q,

where PiES. Evidently, "connected" is an equivalence relation.

This relation partitions S into equivalence classes. These clas-

ses are called the connected components of S. In the same way,
4
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we may define connectedness in S and the connected components

of S. A connected component of S is called an object of S.

Clearly, exactly one component of S contains the #Is. This com-

ponent is called the background of S; all other components of

S are called cavities of S.

Even in ordinary topology it is difficult to characterize

holes. A hole may be thought of as a property of a boundary

surface which makes it topologically equivalent to a torus.

In another approach, an object is defined to have no hole if

every simple closed curve in the object is continuously deform-

able within the object to a single point. We see from these

remarks that the concept of a hole is different from those of

objects and cavities; we cannot point to or label the points which

constitute a hole. Indeed, the points of the objects and cavi-

ties cover the space, but a hole is a property of those collec-

tions of points. Thus, when considering an object (and its cavi-

ties) we shall here try only to understand what is meant by the

number of holes in the object, and not what is meant by a hole.

The genus G(S) of a set S in a 3D digital picture is defined

as the number of objects in S (O(S)) plus the number of cavities

.4 in S (C(S)) minus the number of holes in S (H(S)). As already

mentioned the definition of holes is not simple, and in parti-

cular holes cannot be labelled to facilitate counting them.

But since this can be done with objects and cavities, the defi-

nition of the genus defii.es the number of holes in S, and con-

versely.
4



In [4], Morgenthaler has given a method of computing

G(S) directly from the local patterns in S:

1) When 26-adjacency is used for S,

ilG2 (S)=Oi-02+03-04+05-06+07-08 ,

G26  1

where

=#(2),

*2=# (3)+# (4)+# (5),

03= #(6)+# (7)+# (8),

*4#(9)+#(10)+#(11)+#(12)+#(13)+#(14),

5= # (15)+# (16)+# (17),

¢6=# (18)+# (19)+#(20),

7=#(21),

- 8=#(22),

and by #(n) we mean the number of times the configuration

n of Fig. 1 occurs in the picture S (in all orientations).

2) When 6-adjacency is used for S,

G G6 (S) = i- 2+ 3- 4 ,

where

[[ i=#(2),

.. o 2= # (3),

3=# (9),

4= #(22),

The 22 patterns used in these definitions are drawn in Figure 1.

Morgenthaler has also shown that G26 (S)-G 6 (S)=l and G6 (S)-G 26 (S)=1.
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2. The number of objects, cavities and holes

In this section, we consider algorithms that compute

the number of objects, cavities, and holes in a 3D digital

picture.

A scanner is an Zxm array of finite-state automata

al 11CY12* ... lm

a 2 1 a2 2 *** a2m

Each automaton aii is defined by a 7-tuple <Qi.,6i ,i :,aij,

Xi.,i .,b..>i , where Qij, the set of states, is a set of inte-

gers, and 6ij, the next state function, has the following form:

a..
1)"' IT Q a (k) ×10,i} Qij

k=l ii

where a.. is an integer, and i .:{l,,...,a I} - IxI is a one-to-

one function which enumerates the next state neighborhood of

o... \., the output function, has the following form:

b. •x1)

k=l 1)

where bi is an integer, and 8 ij :{l,... ,b.j} IxI is a one-to-

one function which enumerates the output neighborhood of a...

We will use Q ij (t) to represent the state of aii at time t.

It is assumed that the scanned advances by one plane in each

unit of time and that it scans the first plane at time t=l.

Thus, the input to scanner element a.. at time t is f(i,j,t).
1)

. ... 4 ...



Note that Qij is not a finite set and also that the neigh-

borhood of a.. is not fixed.

The counter C monitors the output of each element of the
z m

scanner; thus C(t)=C(t-1)+ E E X . (t).
i=l j=l i j

Now, we shall describe algorithms for computing the

numbers of objects, cavities, and holes.

1: Objects

The set of states of scanner element o.. is Qij={xlx is an

integer and Ixi.S(i+j-l) (i+j-2)/2+j}. Each automaton a starts

in state 0 and remains in that state as long as 0's are scanned.

When a voxel containing a 1 is reached, aij will assume state

(i+j-l) (i+j-2)/2+j. As Gij tracks a string of l's, an exten-

sion of the component of S is sought, i.e., two automata which

are actively tracking l's are tracking the same object if they

are spatially neighbors or if they are in the same state. All

automata which are tracking the same object assume the same

state (the state of the automaton having the smallest state).

An automaton which passes a lower border of an object and has

been in a state k enters the state -k for one period. The next

time it goes directly to state 0 unless a 1 is encountered. If

a .. enters the state -((i+j-l)(i+j-2)/2+j) and no others are in

the state (i+j-l)(i+j-2)/2+j), then aij will output 1, i.e.,

one object has been scanned. The precise definitions of 6..

ij
and I.•are represented as follows:



i) When 6-adjacency is used for S,

(((i+j-l) (i+j-2)/2+j) *f(t,i,j) if Q . (t-1) 0

-. = LINK(Q. (t-l)) if Q. (t-1) > 0 A f (t,ij)=1

* . -LINK(Q..tl)ifQ (t-l1) > 0 A f (t, i, j) =0,

1i if Q t = -((i+j-l)(i+j-2)/2+j) for all x,y such that
- . I

-(x+y-l) (x+y-2)/2+y > (i+j-l) (i+j-2)/2+j,

0~~~~X otews,1y(t 0-j()

where

* LINK(g)

minlf 2 x ~ +y 1) (xk+Yk 2 )/'2 ~kI(x). (kl '(3l .. (3 yk-1)(Q y (t-l):

g)A(Vj) ( 2:-5j:-k)

((QX (t-l)>0)A((X.j,y.) and x-,j ae6dacn VQxy

(t-l).=QX.y (-l)))
IJ-lyj-1

ii) When 26-adjacency is used for S,

1] iiQJ~tll~~l

(if Q. (t-1) < 0 A f (t, i, j) =
0 1)i* { K((i+j-l) (i+j-2)/2+j) if f(t~i~j) = 1

(-LINK( (i+j-l) (i+j-2)/2+j) if (t-1) > 0 A f(t,i,j) =0

x... is the same as in the case (1),

where

LINK (g)



I lmin2 { (x+y (xk+Yk -
2 ) / 2 + y k I (3x,) ... (3xkl) (lYI )  (3Yk-1 ) ((x 1 +Yl-l)

1(x1+Yl-2) /2+y 1

=g)A(Vj)(2:-j-k) ((Q (t-l)>O)A((xj,yj) and (xj 1 lYj_) are

JJ J- ' - ar
26-adjacent) v (Q (t-l)=Q (t-l))))) }.

J jj XJ-lyj-l

2: Cavities

Since all components of S except the background component ar

cavities of S, the algorithm for counting objects of S can be

used for counting cavities of S by interchanging the roles of 1

and 0. In this case, the initial value of the counter C must be

to remove the background component from the set of cavities of S.

3: Genus

For any S, every 2x2x2 local pattern in Fig. 1 is easily

counted by our computational model. Thus the algorithm computing

the genus of S is easily defined.

4: Holes

Finally from algorithms 1-3, we can construct the algorithm

for counting the number of holes in S, since H(S)=O(S)+C(S)-G(S).

i
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3. Unacceptability of the connectedness of a 3D picture by a

deterministic one-way PSA

In Section 2, we have given algorithms which for every 3D

digital picture count the number of objects, cavities, and holes.

However, as noted in Section 2 the ai used in the algorithms

needs a set of states which is not finite. Further, its neighbor-

hood is not fixed. In language theory, finiteness is required in

the automaton used. From the point of view of language theory,

we prove here the unacceptability of the connectedness of 3D

pictures by deterministic one-way parallel/sequential acceptors.

Parallel/sequential acceptors of 2D pictures are well-known (e.g.,

see [71). It is also known that a deterministic one-way non-

writing parallel/sequential acceptor can determine whether or not

the set of x's in a rectangular array Z of x's and y's is connected.

In contrast with this result, our new theorem for 3D seems to bc

interesting.

A parallel/sequential acceptor of 3D pictures (for brevity:

3DPSA) is analogous to that of 2D pictures. It is defined as

follows: A parallel/sequential acceptor is a 9-tuple A=(Q,q0,QA ,

#,V,#t,#b 6,p), where

Q is a finite nonempty set of states

qE Q is the initial state

QA c Q is the set of accepting states,

# E Q is the blank symbol,

V is a finite nonempty set of symbols called the tape vocabulary,

#t and #b are blank symbols in V,



9 xV

6: Q xV 2 is the state transition function and

p: QxV -2-,O,1} is the move function.

The operation of A on a 3D array E can be described as follows:

A consists of a 2D array of cells

ii ""
C 2 1  .- C2m

Czi ... C

whose lengths are the numbers of columns and rows of E, respective-

ly, together with special "cells"

c00  c0  Co m+l

C0 C1 m+l

20 c2 m+l

.it c£ Cm+1

C£+l 0 "'" c£+i m+l

that are regarded as permanently in the # symbol. E has a row

of #t 's just above its top array and a row of #b's just below

* its bottom array. Initially, A is on the top array of E with every

cell in the state q0 " At any given step, each cell cij reads the

symbol v in its position, senses the states ql,q 21...,q9 of cil1j I ,

Sc i-l,j' ci- 1 ,j+l' ci 1j-l' c i,j' c,j+l Ci+lj-l' Ci+l,j' Ci+l,j+l

and can go into any new state q' and write any new symbol v' such

that (q',v')E6(ql,q2,...,q 9 ). The move function depends only on

a



the (new) state and symbol read by the distinguished cell cll.

O"ip means that A can stay where it is; lii means that A can move

down, -lEp means it can move up.

It is required that p(q,#t)=l and p(q,#b)=-l for all q. It

is understood that #t and #b can never be rewritten. If cll ever

enters a state in QA' we say that A has accepted E.

If a PSA does not move up, A is called one-way.

Now, we prove the following theorems. Let C be the set of

3D arrays ccnsisting of 0's and l's in which the l's are connected.

Theorem 2.1 C is accepted by a nondeterministic one-way 3DPSA.

Proof: Let us consider isometric 3D array grammars, which are

three-dimenisonal analogs of those in the 2D case (see [7]).

Notice that C is generated by an isometric 3D monotonic array gram-

mar G. Here, we can assume that the starting symbol p of G appears

only once during the applications of rewriting rules.

Now, let A be a nondeterministic one-way 3DPSA working as

follows:

1) When o.. reads a symbol, the state changes into one corres-

ponding to a non-terminal symbol of G. This change is done

nondeterministically.
. 2) Illegal guessing in 1) causes aij to go into a dead state.

3) When aij goes into the state corresponding to the starting

symbol p, this state moves to all* In this case, A never
6

goes downward until this move is completed.

4) For two states p, all goes into the dead state.

6



5) When A reaches the bottom plane and finishes its transitions,

all goes into the accepting state if it has memorized the

only P.

From the above construction, we have the theorem. II

Theorem 2.2 C is not accepted by any deterministic one-way

3DPSA.

Proof: Let us consider a square array of side length 4£ as shown

in Fig. 2. The left and right halves are called the L-part and

* R-part, respectively. Cells of both parts are occupied by 0's

and l's as shown in Fig. 3. That is, every even row and every

even column are occupied by l's, and all other cells by 0. This

array is put in some plane of Z. In the arrays other than this

plane, the 1-cells are connected as shown in Fig. 4. Here, ni

is the name of a cell in the L-part and m. is the name of a cell inJ

the R-part. Thus, the cells n. and ni+1 in the same parentheses

are connected in the cells between the top array and pth array,

and the same for the m. and m cells.
j j+l

Further, the line indicated in Fig. 4 shows that the n. and
1

m. cells are connected in the cells under the pth array. This con-
I

nection is always possible by considering a very large p and suff-

ciently high E.

Now, the number of configurations of states of A at the time

it leaves the pth array is 1QI 4 x4 . Also, the number of connec-

tions of cells in the L-part (that is, the number of parenthesized

4



- - - .- - - - - .-

| . . .

2Cx2 C x C 2
1-cells) is 2t 2 2X2 -2 2 ...2C2  22 But we have-i-.

112 2 2!
169. 2 for sufficiently large Z. Hence, there are at

IQ2

least two different parenthesizings which yield the same con-

figuration of states of A at the time it leaves the pth array.

Let these two be as follows:

... (nl1 n2 ) (n3 ,n4 ) ...

... (mlm 2 ) (m3 ,m4 )

and

(nl1 n3 )

(ml om2 ) (m3 ,m 4 ) ...

Let Fig. 5 and Fig. 6 represent these two 3D arrays, where the

connection relations are in the cells between the (p+l)st and bot-

tom arrays. The lines in Fig. 5 show that all 1-cells are con-

nected. This is possible by considering a suitable connection

level.

Suppose that a deterministic one-way 3DPSA A accepts the

connected 3D arrays. Then A accepts the connected 3D array shown

in Fig. 5. But then, A must also accept the non-connected 3D

array shown in Fig. 6, since it gives rise to the same configura-

* tion of states of A at the time it leaves the pth array. This

is a contradiction. Therefore, we have the theorem. //



4. Acceptability of the connectedness of 3D pictures by a multi-

pass one-way PSA

In the previous section, we showed that any deterministic

one-way PSA cannot accept the connectedness of 3D pictures. Here,

we modify the one-way PSA so it can make repeated passes over a

given 3D picture. That is, the new acceptor A acts as follows:

1) First, A works as the usual one-way PSA. This is the first

pass.

2) When A reaches the array below the bottom, A begins to work

again from the top array. This is the second pass.

3) A repeats the behavior 2).

4) If cll ever enters a state in QA during the repeated behavior

of 3), we say that A accepts E.

For this multi-pass 3DPSA, we have the following theorem:

Theorem 3.1 A multi-pass deterministic one-way 3DPSA can accept

the connectedness of 3D pictures.

Proof: Let u(t)=l if t>O, u(t)=O if t O. We consider 3D pictures

consisting of 0's and l's. In Fig. 7 a,b,c,d,e,f,g,h are the

voxels belonging to a 2x2x2 window.

4 Then F(b), the transformed value of b, will depend on the

values of the elements belonging to the three planes that meet at

B.

4For 6-connectivity, we define

F(b)=u(u(a+b-l)+u(b+c-l)+u(a+d+c-2))+u(f+b-l)+u(c+g+f-2)+

u (a+e+f-2)).

Similarly, for 26-connectivity, we define

F(b)=u(u(a+b+g-l)+u(b+c+e-1,)+u(b+f+d-l)+u(a+c+f-l)+

u (b+h-l)).

. .
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Then the following theorem is well-known [9]: When F is applied

repeatedly in parallel, a single object shrinks down to a single

1-voxel in a finite number of steps.

By making use of this result, we can prove the theorem.

This is done as follows:

In the first pass of a multi-pass deterministic one-way PSA A,

the values of a,c,d,e,f,g,h, are written at b as the output of

A. This is done for all voxels.

In the second pass, A writes the result obtained by the

first application of the function F to E. Generally, in the

(n+l)st pass A writes the result obtained by the nth application

of F to E.

When A recognizes a single 1-voxel, c1 1 enters the accepting

state. Therefore, we have the theorem. //

By a similar technique, A can accept E such that it has a

cavity. Furthermore, by making use of a counter (bounded to the

number of voxels in E) a multi-pass deterministic one-way PSA

A can count the number of objects and cavities in E. Thus, we

know from the equation given earlier that a multi-pass determini-

stic one-way PSA can count the number of holes in E.

I
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1 2 3 4... .... ........ 21

1 0 0 0 0 .............. 0 0

2 0 1 0 1 .............. 0 1

3 0 0 0 0 .............. 0 0

2 P 0 1 0 1 .............. 0 1

2£+1 0 0 0 0 .............. 0 0

0 1 0 1 .............. 0 1

0 0 0 0 .............. 0 0

4Y, 0 1 0 1 .............. 0 1

Fig. 3



* (n 1 1 n) (n 3 1 4

... (m 1 2 ) (m 3 ,m 4 )

Fig. 4

* (n 1 1 n) (n.,n)

2 40

... (ml r 2 ) (MV m 4 )

Fig. 5

2/3

4 Fig. 6
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